Propagation peculiarities of mean field massive gravity
نویسندگان
چکیده
Article history: Received 18 April 2015 Accepted 16 July 2015 Available online 28 July 2015 Editor: M. Cvetič Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (mGR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the mGR model correspond to the RS Minkowski metric and external EM field. The common implications in both systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both mGR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. This applies both to mGR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
منابع مشابه
Spherically Symmetric Solutions in a New Braneworld Massive Gravity Theory
In this paper, a combination of the braneworld scenario and covariant de Rham-Gabadadze-Tolley (dRGT) massive Gravity theory is proposed. In this setup, the five-dimensional bulk graviton is considered to be massive. The five dimensional nonlinear ghost-free massive gravity theory affects the 3-brane dynamics and the gravitational potential on the brane. Following the solutions with spherical s...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملCausality of Massive Spin 2 Field in External Gravity
We investigate the structure of equations of motion and lagrangian constraints in the most general theory of massive spin 2 field interacting with external gravitational field. We demonstrate how consistency with the flat spacetime limit can be achieved if the external gravity fulfills vacuum Einstein equations with arbitrary cosmological constant and show that in this case there exists one-par...
متن کاملEffective Field Theory for Massive Gravitons and Gravity in Theory Space
We introduce a technique for restoring general coordinate invariance into theories where it is explicitly broken. This is the analog for gravity of the Callan-Coleman-WessZumino formalism for gauge theories. We use this to elucidate the properties of interacting massless and massive gravitons. For a single graviton with a Planck scale MPl and a mass mg, we find that there is a sensible effectiv...
متن کاملTorsional Waves in Prestressed Fiber Reinforced Medium Subjected to Magnetic Field
The propagation of torsional waves in a prestressed fiber-reinforced half-space under the effect of magnetic field and gravity has been discussed. The problem has been solved analytically using Whittaker function to obtain the exact solution frequency equations. Numerical results for stress, gravity and magnetic field are given and illustrated graphically. Comparisons are made with the results ...
متن کامل